Privacy-Enhancing Proxy Signatures from Non-interactive Anonymous Credentials
نویسندگان
چکیده
Proxy signatures enable an originator to delegate the signing rights for a restricted set of messages to a proxy. The proxy is then able to produce valid signatures only for messages from this delegated set on behalf of the originator. Recently, two variants of privacy-enhancing proxy signatures, namely blank signatures [27] and warrant-hiding proxy signatures [28], have been introduced. In this context, privacy-enhancing means that a verifier of a proxy signature does not learn anything about the delegated message set beyond the message being presented for verification. We observe that this principle bears similarities with functionality provided by anonymous credentials. Inspired by this observation, we examine black-box constructions of the two aforementioned proxy signatures from non-interactive anonymous credentials, i.e., anonymous credentials with a non-interactive showing protocol, and show that the so obtained proxy signatures are secure if the anonymous credential system is secure. Moreover, we present two concrete instantiations using well-known representatives of anonymous credentials, namely Camenisch-Lysyanskaya (CL) and Brands’ credentials. While constructions of anonymous credentials from signature schemes with particular properties, such as CL signatures or structure-preserving signatures, as well as from special variants of signature schemes, such as group signatures, sanitizable and indexed aggregate signatures, are known, this is the first paper that provides constructions of special variants of signature schemes, i.e., privacy-enhancing proxy signatures, from anonymous credentials.
منابع مشابه
Automorphic Signatures in Bilinear Groups
We introduce the notion of automorphic signatures, which satisfy the following properties: the verification keys lie in the message space, messages and signatures consist of group elements only, and verification is done by evaluating a set of pairing-product equations. These signatures make a perfect counterpart to the powerful proof system by Groth and Sahai (Eurocrypt 2008). We provide practi...
متن کاملNon-Interactive Anonymous Credentials
In this paper, we introduce P-signatures. A P-signature scheme consists of a signature scheme, a commitment scheme, and (1) an interactive protocol for obtaining a signature on a committed value; (2) a non-interactive proof system for proving that the contents of a commitment has been signed; (3) a non-interactive proof system for proving that a pair of commitments are commitments to the same v...
متن کاملP-signatures and Noninteractive Anonymous Credentials
In this paper, we introduce P-signatures. A P-signature scheme consists of a signature scheme, a commitment scheme, and (1) an interactive protocol for obtaining a signature on a committed value; (2) a non-interactive proof system for proving that the contents of a commitment has been signed; (3) a noninteractive proof system for proving that a pair of commitments are commitments to the same va...
متن کاملAutomorphic Signatures in Bilinear Groups and an Application to Round-Optimal Blind Signatures
We introduce the notion of automorphic signatures, which satisfy the following properties: the verification keys lie in the message space, messages and signatures consist of elements of a bilinear group, and verification is done by evaluating a set of pairing-product equations. These signatures make a perfect counterpart to the powerful proof system by Groth and Sahai (Eurocrypt 2008). We provi...
متن کاملSolving Revocation with Efficient Update of Anonymous Credentials
Anonymous credential system promise efficient, ubiquitous access to digital services while preserving user privacy. However, their diffusion is impaired by the lack of efficient revocation techniques. Traditional credential revocation measures based on certificate revocation lists or online certification authorities do not provide privacy and can not be used in privacy-sensitive contexts. Revoc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014